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ABSTRACT: A growing list of chemicals are approved for
production and use in the United States and elsewhere, and new
approaches are needed to rapidly assess the potential exposure and
health hazard posed by these substances. Here, we present a high-
throughput, data-driven approach that will aid in estimating
occupational exposure using a database of over 1.5 million
observations of chemical concentrations in U.S. workplace air
samples. We fit a Bayesian hierarchical model that uses industry
type and the physicochemical properties of a substance to predict
the distribution of workplace air concentrations. This model
substantially outperforms a null model when predicting whether a
substance will be detected in an air sample, and if so at what
concentration, with 75.9% classification accuracy and a root-mean-
square error (RMSE) of 1.00 log10 mg m−3 when applied to a held-out test set of substances. This modeling framework can be used
to predict air concentration distributions for new substances, which we demonstrate by making predictions for 5587 new substance-
by-workplace-type pairs reported in the US EPA’s Toxic Substances Control Act (TSCA) Chemical Data Reporting (CDR)
industrial use database. It also allows for improved consideration of occupational exposure within the context of high-throughput,
risk-based chemical prioritization efforts.
KEYWORDS: occupational exposure, high-throughput, screening, hierarchical model, Bayesian, air monitoring

■ INTRODUCTION
The vast number of chemicals approved for use in commerce
has necessitated the development of high-throughput computa-
tional techniques that can identify potentially high-risk
chemicals for further scrutiny.1−3 These techniques typically
estimate chemical exposure for the general population by
mining data sources such as consumer product formulations4−6

and biomonitoring data,7−9 screening for suspect com-
pounds,10,11 and applying various machine learning and/or
probabilistic meta-models that balance contributions from a
variety of exposure pathways.12−14 However, in the United
States, the 2016 Frank Lautenberg Chemical Safety for the 21st
Century Act specifically mandates the protection of highly
exposed subpopulations, whose exposure risk may not be
adequately characterized by the broad, cross-sectional datasets
typically available as inputs for high-throughput models. As a
result, screening-level models are needed to estimate exposure
for tens of thousands of chemicals across many specific
subpopulations, but data availability remains a key challenge
when developing such models.3

Workers are a specific subpopulation at risk for far greater
exposure than the general population to a wide array of
chemicals. As a result, occupational exposure is estimated to
cause over 290 000 deaths globally each year.15 Because

working-age adults spend a large proportion of their time at
places of work, characterizing chemical exposure in these
environments is key to understanding the full picture of
chemical exposures received by these individuals. However, the
types and amounts of chemicals present in work environments
vary dramatically across and within industry types. Even within
a single workplace, chemical exposure may depend on a
worker’s specific tasks, job assignment, and schedule.16,17 In
addition to the challenge of high variability between and within
workplaces, data on the production volume of each substance
and how they are utilized in industrial processes may be
unavailable or highly censored if this information is considered
confidential or protected business information.18

High-throughput occupational exposure must be handled
very differently than general population exposure, or even
typical subpopulation exposures in that every occupation must
be evaluated differently than other occupations. For example,
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modeling exposure for a specific age or ethnic group
subpopulation requires changing the value of parameters
representing the general behavior or bio-relevant information
for that group. But the uniqueness of every job (e.g., its
environment and chemical exposure scenarios) does not allow
for easy substitution of group-specific information. Luckily,
monitoring data are available to address occupation-to-
occupation differences. Workplace monitoring data coming
from sources such as dermal wipes or air sampling in work
areas or the breathing zone of individual workers can be used
to set occupational exposure limits and assess compliance with
those limits. Occupational exposure limits are set to mitigate
risk and are defined specific to a single chemical for a single
exposure route (e.g., dermal, ingestion, inhalation, ocular).
These limits allow employers to take preventative measures to
limit exposure through use of personal protective equipment
(PPE) or adjustments made to worker activities.19,20 While
such monitoring data has been used previously to inform
occupational exposure estimates for select occupation−
chemical couples,21 it has not been generalized to the myriad
of occupation and chemical combinations.
When monitoring data are available, they can be used to

predict exposures using modeling tools such as the Chemical
Screening Tool for Exposures and Environmental Releases
(ChemSTEER). ChemSTEER is a screening-level tool
developed by the US EPA’s Office of Pollution Prevention
and Toxics that provides a means to estimate worker exposure
via several inhalation and dermal exposure models.22,23 These
models require as inputs some information on the amount of
the substance present in the worker’s environment, e.g., as an
air concentration or a vapor generation rate,24,25 which can be
derived from monitoring data. When such monitoring data is
not available, ChemSTEER includes a number of “release
models” that can be used to estimate chemical releases that
occur during specific activities, for example, loading or
unloading a liquid from a container or cleaning a container
with solid residues.26 However, a key challenge to developing
high-throughput occupational exposure modeling that can
screen tens of thousands of substances is that we typically lack
data on both the amount of each substance that might be
present in a workplace environment and the specific activities
that might be carried out using the substance.3,27

Here, we present a data-driven statistical approach to
estimating potential workplace air concentrations based on
workplace type and the physicochemical properties of a
substance. We focus our analysis on organic substances, where
quantitative structure−activity/property relationship (QSAR/
QSPR) models can be applied to predict physicochemical
properties. We leverage monitoring data from the publicly
available Occupational Safety and Health Administration

(OSHA) Chemical Exposure Health Data, a dataset containing
industrial hygiene samples taken by OSHA compliance officers
in workplaces between 1984 and 2018.28 We focused our
analysis on air samples because they represent the bulk of the
data available, and, for most chemicals, inhalation is the
primary exposure route at workplaces.16 Using these data, we
trained a screening model using a Bayesian hierarchical
modeling approach that accounts for similarities between
workplace types, along with physicochemical properties
predicted from chemical structure.

■ METHODS
Workplace Air Concentration Data. We used the

publicly available OSHA Chemical Exposure Health Data as
a source for air concentrations of chemicals in United States
workplaces.28 The dataset consists of samples taken at
workplaces by OSHA compliance officers between 1984 and
2018. For this analysis, we included only air samples of two
types: “personal” samples (N = 1 524 921) taken in the
immediate breathing zone of a worker, and “area” samples (N
= 61 028) taken in zones representative of an industrial process
or multiple workers’ exposure. Blanks and samples of other
types (e.g., dermal wipes, bulk substance samples) were
removed. All sample results were converted to units of log10
mg m−3, using molecular weight when required, and all types
of sampling methods (e.g., instantaneous samples, time-
integrated samples) were treated identically. We dropped any
samples that could not be converted to a concentration, for
example, samples with the units “fibers/cc”, or those that were
reported in mass units without providing the amount of air
sampled (85 821 samples dropped). The majority of such cases
were for inorganic substances (e.g., asbestos, silica, lead) which
were outside the scope of this model. Workplace type was
reported in the OSHA data using two different hierarchical
classification systems, the North American Industry Classi-
fication System (NAICS) for years 2002−201829 and the
Standard Industrial Classification (SIC) for years 1984−
2002.30 We mapped the classification system used in each
year’s data to that of the 2017 NAICS code system (the most
recent at the time of the analysis) using NAICS concordance
tables31 and identified the three-digit “subsectors” (j = 75) and
two-digit “sectors” (k = 19) for each workplace. If a workplace
could not be matched to a single 2017 NAICS sector and
subsector, the associated data were removed from the analysis
(259 299 samples dropped).

Structure Matching and Physicochemical Properties.
To determine the molecular structure of each substance
recorded in the air sampling data, we first matched the
substance names recorded by OSHA to specific chemical
structures and preferred names in the US EPA Distributed

Table 1. List of OPERA-Predicted Physicochemical Properties and Their Distributions across the Substances in the OSHA
Workplace Air Dataset prior to Centering and Scaling

physicochemical property abbreviation unit mean range

log octanol−water partition coefficient log p unitless 1.98 −3.61 to 9.23
boiling point bp °C 212.3 −149.0 to 532.5
log Henry’s law constant log hl log atm-m3 mol−1 −5.48 −11.25 to 1.06
HPLC retention time rt min 8.34 0.00−52.9
log OH rate constanta log oh log cm3 molecule-s−1 −11.2 −15.9 to −9.63
log soil adsorption coefficient log koc log L kg−1 2.19 0.22−6.41

aOH rate constant represents the rate constant for the atmospheric reaction between photochemically produced hydroxyl radicals and the
compound of interest.
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Structure-Searchable Toxicity (DSSTox) Database32 using the
synonym search feature on the US EPA CompTox Chemicals
Dashboard.33,34 A specific chemical structure was defined by a
DSSTox substance identifier (DTXSID). In cases where no
synonymous structure was found, we manually curated
structure matches using the PubChem search function35 and
dropped any samples with substance names that could not be
matched to a single structure (DTXSID), such as mixtures of
indeterminate composition (64/648 substances).
We then used the OPEn structure−activity/property

Relationship App (OPERA) v2.5 suite of QSAR models36 to
predict physicochemical properties for each organic substance
in the OSHA dataset. Although many well-known chemicals
have empirically measured physicochemical property informa-
tion available, we chose to use only OPERA-predicted
properties to streamline the high-throughput workflow of the
model and improve applicability for large chemical lists with
many novel or poorly described chemicals. For sets of highly
correlated properties (|Pearson’s r| > 0.85), we kept one
property in the analysis based on expert judgment and dropped
all others, resulting in six predictors out of an initial 12 (Table
1). Properties were then scaled and centered to have means of
zero and unit variance. Physicochemical properties were not
predicted for inorganic substances because they are outside the
domain of the QSAR models.

Training and Test Sets. We split the dataset into a
training set for model fitting and a test set to assess the
performance of our model on new data. However, some
additional pre-processing steps were carried out before the
training/test split. First, because multiple samples were
sometimes taken within a single sampling effort, we aggregated
air concentrations by inspection number, taking the maximum
observed value to characterize the worst-case scenario of
worker exposure which resulted in 197 985 observations. The
median number of samples per inspection was 3, with a
maximum and minimum of 281 and 1, respectively. Next, we
excluded extreme outliers that had a z-score greater than 4
compared with other observations of the same substance (487
observations dropped). Then, we dropped all data for NAICS
workplace subsectors that had less than 10 detects (19
subsectors dropped, 394 observations dropped) and for
substances without physicochemical property predictions
(i.e., inorganic compounds; 150 107 observations dropped).
We then randomly selected 10% of the substances present in
the OSHA workplace air monitoring dataset (58 substances,
5607 samples) and held out all data associated with these
substances to form the test set, while the remaining 90% of
substances made up the training set (527 substances, 41 390
samples). By splitting the dataset by substance, we ensured that
the test set contained a combination of physicochemical
properties that our model had never seen during the fitting
process. The final datasets used for model training and testing
are provided in Tables S1 and S2. A diagram of the data
processing workflow is provided in Figure 1.

Bayesian Hierarchical Model Structure. Because the
workplace air concentration data had a high proportion of
nondetects reported (39%), we used a two-stage (or hurdle)
model where the first model stage predicts whether a substance
will be detected or not, and the second stage predicts the air
concentration for detected substances.37 For the first stage, we
converted the workplace air data to a binary detect/nondetect
response variable and fit a Bayesian hierarchical logistic
regression model. For the second stage, we fit a similarly

structured, but nonlogistic, Bayesian hierarchical regression
model to a continuous air concentration response variable,
using only data where a substance was detected.
In both models, we included the type of workplace where

sampling occurred as a hierarchical intercept term based on
NAICS sector and subsector. The model equations (eq 1)
include an intercept, β1j, for each subsector j, which was
sampled from a Student’s T distribution where the mean varies
based on sector k. This hierarchical structure allowed us to
consider differences in exposure between subsectors, while
accounting for the fact that subsectors in the same sector may
have similar exposure patterns. It also allowed subsectors with
few observations to be influenced by data from other
subsectors in the same sector.
Both models also incorporated OPERA-predicted phys-

icochemical properties as linear regression terms with
coefficients β2m and predictors Xm. They included regression
terms for the main effects of each physicochemical property
plus all possible two-way interactions. The model structure for
both models was

g y X

T

T

T

T

( ) ( )

Student ( 1, , )

Student ( 5, , )
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=
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where g(y) is the logit link function for the first-stage detect/
nondetect model and the identity function for the second-stage
concentration model. All priors and hyper-priors were chosen
to be weakly informative for generalized linear regression.38

Student’s T prior parameters were ν, μ, and σ, which represent
the degrees of freedom, location, and scale of the distribution,

Figure 1. Diagram of data processing workflow for Occupational
Safety and Health Administration (OSHA) Chemical Exposure
Health Safety Data. Numbers in gray denote the sample size after
the step is completed.
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respectively. Model random error (ε) and Student’s T scale
parameters σ0 and σ01 were modeled with a half-Cauchy prior
with β representing the scale parameter. Model fitting was
performed in Python using full-rank automatic differentiation
variational inference (ADVI) as implemented in the pyMC3
package.39 Model code and scripts to run the analysis are
available at https://github.com/USEPA/ht_occupational or
https://doi.org/10.5281/zenodo.7737239. The total run time
for model fitting is about 30 min on a 16-thread processor. The
fitted model predicts the probability of detection, and if
detected, predicts an air concentration, for a chemical with a
given set of physicochemical properties, in a workplace with a
given NAICS sector/subsector that must be one of the NAICS
codes that occurred in the OSHA monitoring dataset. That is,

the model makes predictions for a specified substance-by-
workplace pair.

Applying the Fit Model to Screen Novel Substance
and Workplace Combinations. To further demonstrate
how our model fit to the OSHA monitoring data could be used
to screen new substance and workplace combinations where
monitoring data is lacking, we leveraged data from the US
EPA’s Toxic Substances Control Act (TSCA) Chemical Data
Reporting (CDR) database, 2016 cycle.40 The CDR rule
implemented under TSCA requires manufacturers to provide
information such as the types of chemicals, amounts produced
or imported, the uses of that chemical, as well as the industrial
sectors to the US EPA to provide exposure-relevant data to
federal risk assessors (Code of Federal Regulations, Title 40,
Chapter 1, Subchapter R, Part 711). From the 2016 CDR data,

Figure 2. (a) Confusion matrix of two-step model performance on the test set (N = 5641) and (b) actual vs predicted workplace air concentration
(log10 mg m−3) for empirically detected air samples.

Figure 3. Distribution of coefficients for physicochemical properties in the first-stage detect/nondetect model (blue) and the second-stage air
concentration model (orange). Length of thin bars corresponds to the 95% credible interval, length of thick bars corresponds to the interquartile
range, and white dots denote the mean value. Two-way interaction terms are denoted with an “x” between terms and use the following
abbreviations: log p = log octanol−water partition coefficient, bp = boiling point, log hl = log Henry’s law constant, rt = HPLC retention time,
log oh = log OH rate constant, log koc = log soil adsorption coefficient.
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we collected substance-by-NAICS sector/subsector combina-
tions that were not included in the OSHA data analysis and
used our model to predict a detection probability and an air
concentration for detects. For more details on CDR data
processing, see Section S1.

■ RESULTS
Model Performance on Training and Test Sets. The

first stage of our model was able to predict whether a given
substance would be detected in a workplace air sampling effort
with 69.6% classification accuracy on the training set. The area
under the receiver operating characteristic curve (AUC), which
considers the imbalance between detect and nondetect
frequencies, was 0.72. In comparison, a null model which
considered only the overall detection rate had 47.5%
classification accuracy and 0.50 AUC on the training set.
The second stage of our model, trained on samples where the
substance was detected in workplace air, had a root-mean-
square error (RMSE) of 0.94 log10 mg m−3 on the training
data, while the null model had an RMSE of 1.48 log10 mg m−3.
When applying our combined hurdle model to the novel

substances in the test set, we were able to predict whether a
substance would be detected with 75.9% accuracy. Our model
was more accurate when predicting detects than nondetects,
which was reflected in an 88.2% true positive rate

( )% true pos.
% true pos. % false neg.+ and a 56.6% true negative rate

( )% true neg.
% true neg. % false pos.+ (Figure 2a). AUC on the test set was

0.79, similar to the value for the training set. In comparison,
predictions from the null model had a 48.1% classification
accuracy and an AUC of 0.50. For samples that were
empirically detected in workplaces and also predicted to be
detected (true positives), the air concentration part of our
model had an RMSE of 1.00 log10 mg m−3, while the null
model had an RMSE of 1.43 log10 mg m−3 (Figure 2b). For

true positives, the model prediction was within 1 order of
magnitude of the empirically measured air concentration in mg
m−3 for 65.1% of cases. In comparison, the total range of the
empirical data was about 11 orders of magnitude.

Relationship between Physicochemical Properties
and Workplace Air Monitoring. Regression coefficients
from the two stages of our model provided information on how
the physicochemical properties of a substance were correlated
with its odds of detection and air concentration when present,
based on past sampling of US workplaces. Across all
workplaces and physicochemical properties, substances were
more likely to be detected if they were predicted to have a low
boiling point and high log octanol−water partition coefficient,
Henry’s law constant, and high-performance liquid chromatog-
raphy (HPLC) retention time (significant main effects; Figure
3, blue). Substances were detected in higher concentrations
when they were predicted to have a low boiling point and
HPLC retention time and high Henry’s law constant (Figure 3,
orange). The significant effects of boiling point are likely
driven by differences in vapor pressure, and thus chemical
volatility. In the case of predicted HPLC retention time, there
are likely physicochemical or structural factors driving this
property that also correlate with chemical use patterns and/or
volatility. For example, chemicals with high volatility tend to
have longer retention times than those of similar molecular
weight but low volatility. In addition to these overall trends,
there were several significant two-way interactions between
physicochemical properties. For example, substances with a
high predicted HPLC retention time were much more likely to
be detected, and at higher air concentrations, when they also
had high predicted soil absorption coefficients (rt × log koc,
Figure 3).

Relationship between Industry Classification and
Workplace Air Monitoring. Detection frequency and air
concentration of chemicals in workplace air samples varied
strongly by industry classification. The three NAICS sectors

Figure 4. Model predictions for the probability of detecting chemicals in workplace air samples and the concentrations (log10 mg m−3) observed
when a chemical was detected for each NAICS sector of industry. Predictions are for the full OSHA dataset (training + test sets). Dots denote
median predictions, and bars denote 95% prediction intervals.
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where chemicals were most likely to be detected in OSHA
workplace air samples were “Other Services”, “Manufacturing”,
and “Construction”, where the median predicted detection
frequency was above 62% (Figure 4). “Other Services”
contained the subsectors: “Personal and Laundry Services”,
and “Repair and Maintenance”. The three sectors with the
lowest detection probability were “Finance and Insurance”,
“Utilities”, and “Public Administration”, which had median
predicted detection frequencies below 35%. The distributions
of air concentrations for detected chemicals did not follow the
same trend as detection frequency. For example, “Mining,
Quarrying, and Oil and Gas Extraction” had the highest
median predicted air concentration at 91 mg m−3, despite
having a relatively low detection frequency of 38% (Figure 4).
The three subsectors where chemicals were most likely to be

detected in workplace air samples were: “Leather and Allied
Product Manufacturing”, “Furniture and Related Product
Manufacturing”, and “Support Activities for Agriculture and
Forestry”, which had detection frequencies just above 80%
(Figure S1). These three subsectors also had the highest
detection frequencies in the empirical data, at 81, 81, and
100%, respectively. The three subsectors where chemicals were
predicted to be observed in the highest concentrations when
detected in workplace air were: “Support Activities for
Mining”, “Leather and Allied Product Manufacturing”, and
“Real Estate”, which had median predicted air concentrations
of 82, 42, and 34 mg m−3, respectively. For comparison, mean
air concentrations for these subsectors in the empirical data
were 82, 67, and 56 mg m−3, respectively.

Estimating Occupational Exposure for New Sub-
stances. To demonstrate how this modeling framework
could be applied to prioritize new substances for further
study, we grouped our predictions for the test set by substance
and ranked this list by detection frequency and median air
concentration across all NAICS sectors and subsectors (Figure
S2 and Table S1). Of the test set substances that were sampled
by OSHA at least five times, 1,1,2-trichloro-1,2,2-trifluoro-
ethane (a chlorofluorocarbon), 3-heptanone (a fragrance and
solvent), and 2-ethylhexyl acrylate (an adhesive and binding
agent) had the highest predicted median detection probability.
The substances with the highest predicted median air
concentration were: 1,1,2-trichloro-1,2,2-trifluoroethane (a
chlorofluorocarbon), isobutane (a common solvent and
propellant), and sevoflurane (an inhalational anesthetic).
Their rankings based on empirical median air concentrations
when detected were 1/27, 6/27, and 13/27. The substance
with the highest predicted and actual median air concen-
trations, 1,1,2-trichloro-1,2,2-trifluoroethane, was detected by
OSHA primarily in the “Manufacturing” sector (n = 88) but
also in “Public Administration”, “Other Services”, “Profes-
sional, Scientific, and Technical Services”, “Finance and
Insurance” and “Information” (all n < 6). Because 1,1,2-
trichloro-1,2,2-trifluoroethane had significantly higher empiri-
cal and predicted air concentrations than other substances in
the test set and was highly sampled by OSHA, it appears as a
separate group of points in the top right of the plot of actual vs
predicted concentrations (Figure 2b). Isobutane was detected
in the sectors “Manufacturing” (n = 3), “Other Services” (n =
1), and “Professional, Scientific, and Technical Services” (n =
1). Sevoflurane was detected in the sectors “Health Care and
Social Assistance” (n = 2) and “Professional, Scientific, and
Technical Services” (n = 1). We also generated model

predictions for the entire OSHA dataset (training + test
sets) for further reference (Table S2).
We also applied our predictive model to 5583 new

substance-by-NAICS sector/subsector pairs reported in the
US EPA CDR dataset. For each pair, we used our model
trained on OSHA data to predict the detection probability and
distribution of air concentrations when detected (Figure S3).
The 15 substance-by-workplace pairs with the highest
predicted median air concentration were dominated by the
“Manufacturing” sector and “Chemical Manufacturing” sub-
sector (Table S3). Of the 11 substances represented in the top
15 pairs, there were 6 per- and polyfluoroalkyl substances
(PFAS), as defined by their inclusion in the US EPA
CompTox Dashboard “PFAS structures in DSSTox” list.41

The full set of CDR predictions is available in Table S4.

■ DISCUSSION
Our model results illustrate how occupational exposure varies
by chemical properties and industry type, and how these trends
can be harnessed to estimate workplace air exposure for novel
substances. We have explicitly used the hierarchical nature of
the workplace coding system to account for correlation
between similar industry types and inform the estimates of
detection frequency and air concentrations presented here.
The two-level model structure further facilitates these
estimates by accounting for the large number of nondetects
among the observations.

Model Performance and Use of Predictions. When
using a held-out set of workplace air samples as a surrogate for
novel substances, we were able to predict whether a substance
would be detected in samples at a given workplace type with a
high degree of accuracy (∼76%), despite the likelihood that air
concentrations vary both temporally and spatially, even within
a single sampling location. Additionally, OSHA inspections
may or may not be triggered by known or suspected unsafe air
releases and samples could span pre-and post-remediation of
releases,42 and our model performs reasonably well despite not
being able to account for these sources of variation. Estimating
the magnitude of air concentrations for detects was a more
challenging task given that observations varied across ∼11
orders of magnitude. Possible sources of prediction error
included unaccounted variation in physical conditions and
chemical use patterns across workplaces within the same
industry type, temporal trends in chemical use patterns,
sampling methods, and analytical techniques, and error in
physicochemical property predictions. Despite these chal-
lenges, for 57% of the held-out test set samples, our hurdle
model was able to correctly predict detection or nondetection
and predict the detected air concentration within 1 order of
magnitude. For comparison, a null model based only on the
mean detection probability and air concentration of the
training set achieved this level of accuracy on only 35.2% of
test set samples. On the test set, the 95% prediction intervals
for each sample spanned an average of 3.7 orders of magnitude.
Our RMSE on untrained data of about 1 order of magnitude is
roughly comparable to the scale of errors for a meta-model of
chemical exposure from near-field, dietary, and fair-field
pathways14 and may be sufficient for chemical screening and
prioritization efforts.
The outputs of our model are predicted distributions of

workplace air concentrations, which can be used as inputs for
inhalation models that estimate worker exposure in terms of
dose. For example, various inhalation models in the EPA

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c08234
Environ. Sci. Technol. 2023, 57, 5947−5956

5952

https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08234/suppl_file/es2c08234_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08234/suppl_file/es2c08234_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08234/suppl_file/es2c08234_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08234/suppl_file/es2c08234_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08234/suppl_file/es2c08234_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08234/suppl_file/es2c08234_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08234/suppl_file/es2c08234_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c08234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ChemSTEER tool take air concentration as an input, along
with parameters related to worker behavior and physiology
(e.g., body weight, exposure frequency, and duration) and
produce estimates of dose in mg kg−1 BW day−1 over various
time frames.23,24 For substances where data on the typical
distribution of air concentrations that might be present at a job
site is lacking, models may be run assuming the substance is
present in the air at the permissible exposure limit (PEL), if
one is available.25,43 Our modeling framework could be used to
replace these PEL assumptions by generating estimates of air
concentration, in the form of a probability distribution, for
such substances with little to no empirical data. Thus, these
probability distributions, combined with estimates of worker
behavior and physiology, can serve as inputs to worker
exposure models that generate dose ranges.
We generated predictions for the OSHA test set and the US

EPA CDR data to demonstrate how this statistical framework
could be applied to estimate the workplace air exposure
potential of new substances or substance-by-workplace pairs.
We chose not to extrapolate beyond the original workplace
types present in the OSHA dataset and included in our
hierarchical model (Table S5), although it should be possible
to make predictions for such data by setting the subsector
random intercept or sector hyperprior to zero, effectively
assuming that the effect of a novel sector or subsector is equal
to the average of those already observed. Although the model
was not trained on any of the OSHA test set substances, nor
most of the CDR substances, it benefits from data on
substances that have similar physicochemical properties and
were observed in similar workplaces in the training data. To
prioritize these substances based on the likelihood of risk, these
estimated air concentrations must be compared to each
substance’s hazard, i.e., what level of exposure is likely to
produce a negative health outcome.3 For example, 1,1,2-
trichloro-1,2,2-trifluoroethane was the substance in the test set
that was most frequently detected and in the highest air
concentration, when sampled by OSHA, but its median
predicted air concentration of 3660 mg m−3 was well below the
OSHA permissible exposure limit of 7600 mg m−343 and the
level considered immediately dangerous to life or health of
15 200 mg m−3.44 However, for many substances regulated by
TSCA, information on what air concentration results in health
hazards is not available. In these cases, new approach
methodologies such as high-throughput bioactivity screening
and high-throughput toxicokinetics models can be used to
estimate the hazard in terms of dose. To compare our results
to these hazard predictions, our air concentration predictions
could be converted to worker dose (e.g., mg kg−1 day−1) using
a worker exposure model such as those in the EPA
ChemSTEER tools. Substances could then be sorted by the
difference between estimated exposure and estimated hazard,
both in terms of dose, to identify those with a higher likelihood
of risk for further scrutiny.3 Focused investigations into the
identified substances should consider critical context such as
the amount of the substance manufactured/used/stored in
typical workplaces and the activity patterns and PPE use of
workers.
One challenge when applying this framework to predict

occupational exposure for a novel substance with no sampling
data is that we may lack information on what types of industry
(NAICS sector and subsector) may utilize this substance at
present or in the future. In these cases, chemical functional use
models, machine-learning-based models that classify substan-

ces into their likely functional roles in products and processes,
represent a potential tool for mapping the chemical structure
to a number of candidate industries.5,45 Air exposure could
then be estimated for each candidate industry type using our
data-driven statistical framework that leverages historical air
monitoring data for each specific industry sector and subsector.
While the model presented here can be used to make

predictions for chemicals not present in the OSHA database, a
second application may be in using the model’s predictions for
chemicals within the database as reference values by chemical
and industry, for evaluation of other model estimates. That is,
there are several challenges to using all of the observations of a
given chemical for a given industry within the OSHA database
for statistical evaluation, such as the small number of
observations in certain categories and the high rate of
nondetects. The estimates of our model might be thought of
as a summary of the OSHA observations, allowing for a more
direct analysis of differences between predicted and observed
air concentrations. The results of this model might be used to
systematically evaluate, calibrate, and develop consensus
occupational exposure models as in the EPA’s Systematic
Empirical Evaluation of Models (SEEM).3

Limitations. Although the OSHA Chemical Exposure
Health Data is, to our knowledge, the most comprehensive
publicly available database of workplace chemical monitoring,
there are inherent limitations to this dataset that must be
considered. While some workplace inspections are carried out
randomly within high-hazard industries, many are triggered by
complaints of possible violations or worker health incidents.42

As a result, these data may be biased toward higher-than-
average chemical exposure scenarios, particularly in tradition-
ally low-hazard industries where random inspections for
compliance are less common. This possible source of bias,
plus the fact that we used the maximum concentration from
each sampling event, may produce estimates that are more
representative of “worst-case scenarios,” but a consideration of
such high-risk incidents is useful in the context of chemical risk
screening and prioritization.46 Additionally, physical conditions
at workplaces vary considerably, for example, indoor vs
outdoor areas, room size, and ventilation rate, and the
OSHA dataset lacks such information. However, the sector
and subsector random intercepts in the model can account for
mean differences between workplace types, and thus our air
concentration estimates should be considered to reflect the
mean physical conditions of each sector and subsector as
sampled by OSHA.
Because the OSHA dataset spans more than three decades of

compliance activities, it is likely to include a number of
temporal trends in industrial activities that our model could
not account for. From 1984 to the present, there have been
changes in the types of industrial processes carried out, the
procedures and protections involved in these processes, and
the types of substances being used and produced. These
patterns are difficult to account for in a broad screening model,
as they have occurred simultaneously and likely affect each
substance differently. For example, 1,1,2-trichloro-1,2,2-tri-
fluoroethane (also known as CFC-113), was predicted to be
most frequently detected and with the highest air concen-
tration out of the test set chemicals, but it has been completely
phased out of production and importing in the United States
since 1996, in accordance with the Montreal Protocol. As a
result, 106 of the 108 OSHA samples for this substance
occurred before 1996. While estimates of present-day exposure
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risk need to consider such temporal trends, inclusion of these
historical data in the model helps to inform the relationship
between the physicochemical properties of substance and
workplace air concentrations. Future model development
could also consider a weighting system where more recent
observations are given more influence in the model fitting
process.
A further challenge when analyzing this dataset is the lack of

information on the detection limit for each air sample. As such,
it is not possible to determine whether a chemical was truly not
present in a sample or if it was simply below the assay’s limit of
detection, and zero values cannot be substituted with
placeholder values based off the detection limit (e.g., half the
limit of detection). This also precludes the use models that
account for limit of detection, such as censored regression
models. Further, with the dataset spanning more than 30 years
of sampling, it is reasonable to assume that the detection limit
varied over time even for individual chemicals, as analytical
chemistry methods and instrumentation have advanced. This
uncertainty and temporal variation in the limit of detection
may contribute to our model’s systematic misclassification of
many low-concentration measurements as nondetects rather
than detects (Figure 2). Despite the challenges inherent to a
broad modeling approach trained on a complex dataset, even a
rough prediction of workplace air exposure potential,
combined with an associated estimate of uncertainty, can be
of use when prioritizing a large number of substances for
further scrutiny.46

Implications for Risk Assessment. There are little to no
data available on occupational use patterns, production
amounts, or air releases for many chemicals, which limits our
ability to perform risk assessment on the tens of thousands of
substances used in commerce. We present a data-driven
approach that leverages over three decades of workplace
samples to model air concentrations as a function of industry
type and the physicochemical properties of a substance. This
model dramatically outperforms a null model when predicting
whether a substance will be detected in an air sample, and if so
at what concentration. Predicted air concentrations from this
model can be used as inputs to exposure models to estimate
worker doses and could be combined with high-throughput
exposure estimates for other pathways such as ambient air,
consumer product and dietary sources to build a more
complete picture of individual exposure. This type of exposure
information should be paired with an understanding of hazard
from high-throughput bioactivity assays and/or pharmacoki-
netics models to identify and prioritize substances that may
pose high risk, i.e., where exposure is predicted to be close to
the levels that may be hazardous to human health. These new
approach methodologies can be used in tandem with
traditional risk assessment tools to meet the challenge of
identifying high-risk chemicals and protecting human health in
an ever-growing chemical space.
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